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ABSTRACT

Continual Federated Learning (CFL) is essential for enabling real-world appli-
cations where multiple decentralized clients adaptively learn from continuous
data streams. A significant challenge in CFL is mitigating catastrophic forgetting,
where models lose previously acquired knowledge when learning new informa-
tion. Existing works on this issue either make unrealistic assumptions about the
availability of task boundaries or face difficulties due to the constraints of de-
vice storage capacities and the heterogeneous nature of data distributions among
clients. To address these limitations, we introduce a buffer-based Gradient Projec-
tion method (FedGP). This method tackles catastrophic forgetting by leveraging
local buffer samples and aggregated buffer gradients, thus preserving knowledge
across multiple clients. Our method is compatible with existing CFL techniques,
enhancing their performance in the CFL context. Our experiments on standard
benchmarks show consistent performance improvements across diverse scenar-
ios. For example, on a task-incremental learning setting with CIFAR100, our
method can help increase the accuracy up to 27%. Our code is available at
https://github.com/shenghongdai/FedGP/.

1 INTRODUCTION

Federated Learning (FL) is a machine learning technique that facilitates collaborative model training
among a large number of users while keeping data decentralized for privacy and efficient communica-
tion. In real-world applications, models trained via FL need the flexibility to continuously adapt to
new data streams without forgetting past knowledge. This is critical in a variety of scenarios, such as
autonomous vehicles, which must adapt to changes in the surroundings like new buildings or vehicle
types without losing proficiency in previously encountered contexts. These real-world considerations
make it essential to integrate FL with continual learning (CL) (Shmelkov et al., 2017; Chaudhry et al.,
2018; Thrun, 1995; Aljundi et al., 2017; Chen & Liu, 2018; Aljundi et al., 2018), thereby giving rise
to the concept of Continual Federated Learning (CFL).

The biggest challenge in CFL, as in CL, is catastrophic forgetting, where the model gradually shifts its
focus from old data to new data and unintentionally discards previously acquired knowledge. Initial
attempts to mitigate catastrophic forgetting in CFL incorporated existing CL solutions at each client

A preliminary version of this work was presented at the Federated Learning Systems (FLSys) Workshop @
Sixth Conference on Machine Learning and Systems, June 2023.
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of FL, such as replaying previous task data or penalizing the updates of weights that are crucial for
preserving the knowledge from earlier tasks. However, recent works (Bakman et al., 2023; Ma et al.,
2022; Yoon et al., 2021) have observed that this naı̈ve approach cannot fully mitigate the problem
due to two reasons: (i) small-scale devices participating in FL only have limited buffer size to store
the data from previous tasks, (ii) data distributions are not identical across clients in FL. Moreover,
existing methods developed for CFL suffer from several limitations. These include scalability issues
as the number of tasks grows (Yoon et al., 2021; Venkatesha et al., 2022), the need for significant
effort in generating or collecting surrogate data (Ma et al., 2022), and significant communication
overhead (Yao & Sun, 2020). A crucial constraint shared by all these methods is that they require
explicit task boundaries. Mitigating catastrophic forgetting in practical scenarios where fixed task
boundaries are absent throughout the training process, known as general continual learning (Buzzega
et al., 2020), remains an important open question.

To address these existing challenges of CFL, we introduce a method called buffer-based Gradient
Projection, which we dub FedGP. Our approach, illustrated in Fig. 1, involves two key components:

1. Global Buffer Gradients: Each client k computes the local buffer gradient gkref of the global
model with respect to its local buffer data. All local buffer gradients are then securely averaged
to obtain aggregated buffer gradient gref .

2. Local Gradient Projection: In the next round, each client k updates its local model such that the
direction for the model update does not conflict with aggregated buffer gradient gref from the
previous round, ensuring each client preserves past information from all clients.

Importantly, our FedGP method is designed to be fully compatible with (i) general continual learning
settings, when task boundary is unknown, and (ii) secure aggregation techniques (Bonawitz et al.,
2017). Secure aggregation ensures that while clients share gradients or model updates, the individual
data remains private (Bakman et al., 2023).
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Figure 1: An overview of our proposed method,
FedGP. In each round t, client k receives data
Dk

t and trains a local model wk
t . To address catas-

trophic forgetting, a portion of the incoming data
is stored in a buffer Mk. Given the aggregated
model wt provided by the central server, each
client computes the gradient with respect to wt

using its buffer dataMk. The server securely ag-
gregates the local buffer gradients from all clients
to obtain an aggregated buffer gradient gref, which
will guide the local model update for each client k
in the subsequent round.

Our contributions: We introduce a new method
for CFL, called FedGP. This method utilizes
information from previous tasks across clients to
effectively mitigate catastrophic forgetting, with-
out having access to task boundaries. Further-
more, FedGP can seamlessly integrate with ex-
isting CFL techniques to enhance performance.

We conduct comprehensive experiments to
demonstrate the effectiveness of FedGP across
various standard image classification bench-
marks and a text classification task. FedGP
consistently improves accuracy and reduces for-
getting on top of existing CFL baselines across
diverse benchmark datasets. Further, we eval-
uate the robustness of our method considering
various buffer sizes, communication frequency,
asynchronous environments, and different num-
bers of tasks and users. This evaluation also
includes an ablation study to examine each con-
tributions of FedGP key components.

2 RELATED WORK

Prior work related to our paper falls into three categories: Continual Learning (CL), Federated
Learning (FL), and Continual Federated Learning (CFL).

2.1 CONTINUAL LEARNING (CL)

CL addresses the problem of learning multiple tasks consecutively using a single model. Catastrophic
forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990; French, 1999), where a classifier trained for
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a current task performs poorly on previous tasks, is a major challenge. Existing approaches can be
categorized into regularization-based, architecture-based, and replay-based methods.

Regularization-based methods Some CL methods add a regularization term in the loss used
for the model update; they penalize the updates on weights that are important for previous tasks.
EWC (Kirkpatrick et al., 2017), SI (Zenke et al., 2017), Riemannian Walk (Chaudhry et al., 2018) are
methods within this category. EWC uses Fisher information matrix to evaluate the importance of
parameters for previous tasks. Besides, LwF (Li & Hoiem, 2017) leverages knowledge distillation to
preserve outputs on previous tasks while learning the current task.

Architecture-based methods A class of CL methods assigns a subset of model parameters to each
task, so that different tasks are learned by different parameters. This class of methods is also known
as parameter isolation methods. Some methods including PNN (Rusu et al., 2016) and DEN (Yoon
et al., 2017) uses dynamic architectures where the architecture changes dynamically as the number of
tasks increases. These methods have issues where the number of required parameters grows linearly
with the number of tasks. To tackle this issue, fixed network are used in the recent methods including
PackNet (Mallya & Lazebnik, 2018), HAT (Serra et al., 2018) and PathNet (Fernando et al., 2017).
SupSup (Wortsman et al., 2020) and DualNet (Pham et al., 2021) are the latest SOTA methods.

Replay-based methods To avoid catastrophic forgetting, a class of CL methods employs a replay
buffer to save a small portion of the data seen in previous tasks and reuse it in the training of
subsequent tasks. One of the early works in this area is ER (Ratcliff, 1990; Robins, 1995). In more
contemporary studies, iCaRL (Rebuffi et al., 2017) stores exemplars of data from previous tasks and
adds distillation loss for old exemplars to mitigate the forgetting issue. Deep Generative Replay (Shin
et al., 2017) retains the memories of the previous tasks by loading the synthetic data generated by
GANs without replaying the actual data for the previous tasks. GSS (Aljundi et al., 2019) optimally
selects data for replay buffer by maximizing the diversity of samples in terms of the gradient in the
parameter space. GEM (Lopez-Paz & Ranzato, 2017) and its variant A-GEM (Chaudhry et al., 2019)
leverage an episodic memory that stores part of seen samples for each task to prevent forgetting
old knowledge. Similarly, OGD (Farajtabar et al., 2020) stores gradients as opposed to actual data,
providing a reference in projection. More recent work include GDumb (Prabhu et al., 2020), BiC (Wu
et al., 2019), DER++, and Co2L (Cha et al., 2021). Despite its simplicity, replay-based techniques
have shown great performances on multiple benchmarks (Mai et al., 2022; Parisi et al., 2019). FedGP
leverages a replay-based method that alleviates forgetting by reusing some data from previous tasks.

General continual learning Prior works on CL often rely on the information about the task
boundaries. For example, some regularization-based methods store network responses at task
boundaries; architecture-based methods update the model architecture after one task is finished; some
replay-based methods perform specific steps specifically at task boundaries. However, when dealing
with some data in practical settings, task boundaries are not clearly defined. This scenario, where
sequential tasks are learned continuously without explicit knowledge of task boundaries, is referred
to as general continual learning (Buzzega et al., 2020; Aljundi et al., 2019; Chaudhry et al., 2019).
To address general continual learning, replay-based methods can utilize reservoir sampling (Vitter,
1985), which allows sampling throughout the training rather than relying on task boundaries. In our
work, we specifically focus on general continual learning with reservoir sampling, particularly in the
context of federated learning setups.

2.2 FEDERATED LEARNING (FL)

FL enables collaborative training of a model with improved data privacy (Kairouz et al., 2021; Lim
et al., 2020; Zhao et al., 2018; Konečnỳ et al., 2016). FedAvg (McMahan et al., 2017) is a widely
used FL algorithm, but most existing methods (Li et al., 2020; Shoham et al., 2019; Karimireddy
et al., 2020; Li et al., 2019; Mohri et al., 2019) assume static data distribution over time, ignoring
temporal dynamics.

2.3 CONTINUAL FEDERATED LEARNING (CFL)

CFL tackles the problem of learning multiple consecutive tasks in the FL setup. FedProx (Li
et al., 2020) and FedCurv (Shoham et al., 2019) aim to preserve previously learned tasks, while
FedWeIT (Yoon et al., 2021) and NetTailor (Venkatesha et al., 2022) prevent interference between
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irrelevant tasks. Other methods including CFeD (Ma et al., 2022), FedCL (Yao & Sun, 2020), and
GLFC (Dong et al., 2022) use surrogate datasets, importance weights, or class-aware techniques
to distill the knowledge obtained from previous tasks. However, existing CFL methods suffer
from several limitations, e.g., not scalable as the number of tasks increases (Yoon et al., 2021;
Venkatesha et al., 2022), requiring a surrogate dataset (Ma et al., 2022) or additional communication
overhead (Yao & Sun, 2020), and not applicable to general continual setting that does not have fixed
task boundaries. Our method effectively addresses these limitations, enhancing the efficacy of CFL.

3 PRELIMINARIES

We focus on finding a single classifier f (having model parameter w) that performs well on T tasks.
We assume that at time slot t ∈ [T ], the classifier is only allowed to be trained for task t, where we
define [N ] := {1, · · · , N} for a positive integer N . We assume the feature-label samples (xt, yt) for
task t are drawn from an unknown distribution Dt. The optimization problem for CL at time τ ∈ [T ]
is written as

min
w

τ∑
t=1

E(xt,yt)∼Dt
[ℓ (yt, f (xt;w))] , (1)

where ℓ is the loss function, and f(xt;w) is the output of classifier f with parameter w, for input
xt. We consider a practical scenario where we do not have enough storage to save all the data seen
for the previous task (t < τ ); instead, we employ a replay bufferM that selectively stores a subset
of data. We use the buffer data as a proxy to summarize past samples and refine the model updates.
We constrain the model updates in a way that the average loss for the data in bufferM does not
increase. Given the model wτ−1 trained on previous tasks, the constrained optimization problem at
time τ ∈ [T ] is represented as:

min
w

E(xτ ,yτ )∼Dτ
[ℓ (yτ , f (xτ ;w))]

s.t. E(xb,yb)∼Db
[ℓ (yb, f (xb;w)) ≤ ℓ (yb, f (xb;wτ−1))] ,

(2)

where Db is a uniform distribution over the samples in bufferM, and (xb, yb) are sampled from this
distribution Db. The optimization problem in Eq. 2 can be reformulated for various CL methods as
below. First, some methods including DER (Buzzega et al., 2020) use regularization techniques to
find the model parameter w that minimizes the loss with respect to the local replay bufferM as well
as current samples. For a given regularization coefficient γ, the optimization problem for CL with
replay buffers at time τ ∈ [T ] is:

min
w

E(xτ ,yτ )∼Dτ
[ℓ (yτ , f(xτ ;w))] + γE(xb,yb)∼Db

[ℓ (yb, f(xb;w))] . (3)

Second, some other methods, including A-GEM (Chaudhry et al., 2019), attempt to approximately
implement the constraints of Eq. 2 by considering the gradients with respect to the current/buffer
data. Specifically, the constraint promotes the alignment of the gradient with respect to the current
batch of data (xτ , yτ ) and that for the buffer data (xb, yb) sampled from the distribution Db. This
optimization problem at time τ ∈ [T ] is formulated as:

min
w

E(xτ ,yτ )∼Dτ
[ℓ (yτ , f (xτ ;w))]

s.t. E(xτ ,yτ )∼Dτ ,(xb,yb)∼Db
[⟨∇w [ℓ (yτ , f (xτ ;w))] ,∇w [ℓ (yb, f (xb;w))]⟩] ≥ 0

(4)

For the continual federated learning (CFL) setup where the data is owned by K clients, we use
the superscript k ∈ [K] to denote each client, i.e., client k samples the data from Dk

t at time t
and employs a local replay bufferMk. In the case of using FedAvg (McMahan et al., 2017), each
round of the CFL is operated as follows. First, each client k ∈ [K] performs multiple iterations
of local updates with Dk

t with the assistance of replay bufferMk. Second, once the local training
is completed, each client sends the model updates to the central server. Finally, the central server
aggregates the model updates and transmits them back to clients.

4 FEDGP

We introduce a method FedGP that is compatible with various CFL techniques, significantly enhanc-
ing their performance in the CFL context. Our approach draws inspiration from A-GEM (Chaudhry

4



et al., 2019), which projects the gradient with respect to its own historical data. Building upon this
idea, we utilize the global buffer gradient, which is the average buffer gradient across all clients, as a
reference to project the local gradient. This allows us to take advantage of the collective experience
of multiple clients and mitigate the risk of forgetting previously learned knowledge in FL scenarios.

Algorithm 1 FedAvg ServerUpdate with FedGP

Initialize random wk, and setMk = {}, gref = None
for each task t = 1 to T do

for each communication r = 1 to R do
wk ← ClientUpdate(t, wk, gref), ∀k
w ← SecAgg

(
wk

)
gkref ← ComputeBufferGrad(w,Mk), ∀k
gref ← SecAgg

(
gkref

)
end for

end for
Return w, the final global model

Algorithm 2 ClientUpdate(t, w, gref) at client k

Input: Task index t, model w, buffer gradient gref,
batch size β
Load the dataset Dk

t , local bufferMk

Initialize n = 0 at the first task
for each batch {(xi, yi)}βi=1 in Dk

t do
g = ∇w

[
1
β

∑β
i=1 ℓ(yi, f(xi;w))

]
g̃ ← g − projgref g · 1(g

⊤
refg ≤ 0)

w ← w − αg̃ for some learning rate α

ReservoirSampling(Mk, {(xi, yi)}βi=1, n)
n← n+ β

end for
Return w to server

Algorithm 3 ComputeBufferGrad(w,Mk)

Input: global model w, local bufferMk

(x1, y1) . . . (xm, ym)← random samples fromMk

g = 1
m

∑m
i=1∇w [ℓ(yi, f(xi;w))]

Return g to server

As a replay-based method, FedGP main-
tains a local buffer on each client, which
is a memory buffer storing a subset of
data sampled from old tasks. The lo-
cal buffer at client k is denoted byMk.
As the continuous data is loaded to the
client, it keeps updating the buffer so that
Mk becomes a good representative of
old tasks.

Algorithm 1 provides the overview of
our method in CFL setup, including the
process of sharing information (model
and buffer gradient) between the server
and each client. For each new round
r ∈ [R], the server first aggregates the
local models wk from client k ∈ [K],
getting a global model w. Afterwards,
the server aggregates the local buffer gra-
dient gkref (the gradient computed on the
global model w with respect to the local
bufferMk) from client k ∈ [K] to obtain
a global buffer gradient gref. It is worth
noting that the term “aggregation” in this
context refers to the averaging of locally
computed values across all clients. Such
aggregation can be securely performed
by the central server using secure aggre-
gation (Bonawitz et al., 2017), which
is denoted as “SecAgg” in Algorithm
1. Note that here we have two functions
used at the client side, ClientUpdate
and ComputeBufferGrad, which are
given in Algorithm 2 and 3, respectively.
ClientUpdate shows how client k
updates its local model for task t. The
client first loads the global model w and
the global buffer gradient gref which are
received from the server in the previous
round. It also loads the local bufferMk

storing a subset of samples for previous tasks, and the data Dk
t for the current task. For each batch

{(xi, yi)}βi=1 in Dk
t , the client computes the batch gradient g for the model w. The client then

compares the direction of g with the direction of the global buffer gradient gref received from the
server. When the angle between g and gref is greater than 90◦, it implies that while using the direction
of g as a reference for gradient descent may improve performance on the current task, but at the cost
of degrading performance on previous tasks. To retain the knowledge on the previous tasks, we do
the following: whenever g and gref are having a negative inner product, we project the gradient g onto
the global buffer gradient (which can be considered as a reference) gref and remove this component
from g, i.e., define

g̃ = g − gT gref

gTrefgref
gref · 1(g⊤refg ≤ 0), (5)

following the idea suggested in (Chaudhry et al., 2019). As illustrated in Fig. 2, this projection helps
prevent the model updates along the direction that is harming the performance on previous tasks.

5



g

gT gref
gT

refgref
grefg̃

gref

Figure 2: Illustration of the gradient pro-
jection in Eq. 5. If the angle between
the gradient update g and global buffer
gradient (considered as a reference) gref
is larger than 90◦, we project g on gref
to minimize the interference and merely
update along the directions of g̃ that is
orthogonal to gref.

After gradient projection, the client updates its local model
w by applying the gradient descent step with the updated
gradient g̃. Finally, the client updates the contents of the
bufferMk by using the reservoir sampling (Vitter, 1985)
written in Algorithm 4 in the Appendix. Reservoir sam-
pling selects a random sample of |Mk| elements from a
local input stream, while ensuring that each element has an
equal probability of being included in the sample. One of
the advantages of this method is that it does not require any
prior knowledge of the data stream. Once the updated local
models {wk}Kk=1 are transmitted to the server, the global
model w is securely updated on the server side, and trans-
mitted to each client. Then, each client k computes the
local buffer gradient (i.e., the gradient of the model w with
respect to the samples in the local bufferMk) as shown in Algorithm 3 ComputeBufferGrad.

After each client computes the local buffer gradient gkref, the server allows the use of secure aggregation
to combine these local buffer gradients and update the global buffer gradient gref. Secure aggregation
is a well-established technique in FL that ensures the server learns nothing about individual clients’
data beyond their aggregated sum. This compatibility with secure aggregation enhances the privacy
safeguards of our proposed approach, effectively minimizing the risk of data leakage from individual
clients. The aforementioned process takes place between each communication and is repeated R
times within each task. After traversing T tasks, the final global model w is obtained, as shown in
Algorithm 1. Note that the pseudocode describes the FL+FedGP process. FedGP is designed to
be compatible with various CFL techniques. Details of the combination are elaborated upon in the
Appendix C.

5 EXPERIMENTS

In this section, we assess the efficacy of our method, FedGP, in combination with various CFL
baselines, under non-IID data distribution across clients. To evaluate these methods, we conduct ex-
periments on image classification tasks for benchmark datasets including rotated-MNIST (Lopez-Paz
& Ranzato, 2017), permuted-MNIST (Goodfellow et al., 2013), sequential-CIFAR10, and sequential-
CIFAR100 (Lopez-Paz & Ranzato, 2017) datasets, as well as a text classification task (Mehta et al.,
2021) on sequential-YahooQA dataset (Zhang et al., 2015). We also explore FedGP on an object
detection task on a streaming CARLA dataset (Dai et al., 2023; Dosovitskiy et al., 2017) in Ap-
pendix B. We have further explored an ablation study, which examines each element of our approach,
highlighting their roles in performance enhancement. All experiments were conducted on a Linux
workstation equipped with 8 NVIDIA GeForce RTX 2080Ti GPUs and averaged across five runs,
each using a different seed. For further details and additional results, please refer to Appendix A.

5.1 IMAGE CLASSIFICATION

5.1.1 SETTINGS

Evaluation Datasets. We evaluate our approach on three CL scenarios: domain incremental learning
(domain-IL), class incremental learning (class-IL), and task incremental learning (task-IL). For
domain-IL, the data distribution of each class changes across different tasks. We use the rotated-
MNIST and permuted-MNIST datasets for domain-IL, where each task rotates the training digits by a
random angle or applies a random permutation. We create T = 10 tasks for domain-IL experiments.

For class-IL and task-IL, we partition the set of classes into disjoint subsets and assign each subset to
a particular task. For instance, in our image classification experiments for class-IL and task-IL, we
divide the CIFAR-100 dataset (with C = 100 classes) into T = 10 subsets, each of which contains
the samples for C/T = 10 classes. Each task t ∈ [T ] is defined as the classification of images
from each subset t ∈ [T ]. The difference between class-IL and task-IL is that in the task-IL setup,
we assume the task identity t is given at inference time. That is, the model f predicts among the
C/T = 10 classes corresponding to task t. The class-IL and task-IL settings for CIFAR-10 are
defined by splitting the CIFAR-10 dataset into T = 5 tasks, with each task having two unique classes.
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In the FL setup, we assume that the data distribution is non-IID across the different clients. Once
we define the data for each task, we split it among K clients in a non-IID manner. For the rotated-
MNIST or permuted-MNIST dataset, each client receives samples for two MNIST digits. To create
a sequential-CIFAR10 or sequential-CIFAR100 dataset, we use the Latent Dirichlet Allocation
(LDA) (Hsu et al., 2019). This algorithm partitions the dataset among multiple clients by assigning
samples of each class to different clients based on the probability distribution p ∼ Dir(α), where
α = 0.3. Communication of models and buffer gradients occurs whenever all clients complete E
local epochs training.

Architecture and Hyperparameters. For the rotated-MNIST and permuted-MNIST dataset, we use
a simple CNN architecture (McMahan et al., 2017), and split the dataset into K = 10 clients. Each
client performs local training for E = 1 epoch between communications, and we set the number
of communication rounds as R = 20 for each task. For the sequential-CIFAR10 and sequential-
CIFAR100 dataset, we use a ResNet18 architecture, and divide the dataset into K = 10 clients. Each
client trains for E = 5 epochs between communications, and uses R = 20 rounds of communication
for each task. During local training, Stochastic Gradient Descent (SGD) is employed with a learning
rate of 0.01 for MNIST and 0.1 for CIFAR datasets. Unless otherwise noted, our studies used a 200
buffer size, a negligible storage concern for edge device like iPhone.

Baselines. We evaluate the performance improvement of FedGP on three types of baselines: 1) FL,
the basic FedAvg which trains only on the current task without considering performance on previous
tasks; 2) FL+CL, which is FedAvg (FL) with continual learning solutions applied to clients; and 3)
CFL, which represents the existing Continual Federated Learning methods.

CL methods include A-GEM (Chaudhry et al., 2019), which aligns model gradients for buffer and
incoming data; GPM (Saha et al., 2021), using the network representation/activations approximated
by top singular vectors as the old tasks’ reference vector; DER (Buzzega et al., 2020), utilizing
network output logits for past experience distillation; iCaRL (Rebuffi et al., 2017), which adds
current task nearest-mean-of-exemplars to a memory buffer via herding and counters representation
deterioration with a self-distillation loss term; and L2P (Wang et al., 2022), a state-of-the-art approach
that instructs pre-trained models to sequentially learn tasks using prompt pool memory spaces.

CFL methods we tested are FedCurv (Shoham et al., 2019), which avoids updating past task-critical
weights; FedProx (Li et al., 2020), introducing a proximal weight for global model alignment;
CFeD (Ma et al., 2022), using surrogate dataset-based knowledge distillation; and GLFC (Dong et al.,
2022), a tripartite method to counteract forgetting: 1) clients retain old task data and incorporate it
with a normalization factor during new task training, 2) clients save the prior model, compute the KL
divergence loss between the new and old model outputs (from the last layer), and 3) an additional
proxy server is used to gather perturbed gradients for client sample generation. FOT (Bakman
et al., 2023) also projects the gradients on the subspace specified by previous tasks. Details are
in Appendix A.6. As for FedWeIT (Yoon et al., 2021), we believe it might not serve as a suitable
benchmark given its focus on personalized federated learning (FL) without a global model accuracy
to contrast with.

Note that CFeD, GLFC, GPM, and iCaRL require task boundaries during training. They exploit task
changes to snapshot the network, with iCaRL further relying on these for memory buffer updates.
For specific parameters and implementation unique to each method, please refer to Appendix A.9.

Performance Metrics. We assess the performance of the global model on the test dataset, which
is a union of the test data for all previous tasks. The average accuracy (measured after train-
ing on task t) is denoted as Acct = 1

t

∑t
i=1 at,i, where at,i is evaluated on task i after training

up to task t. Additionally, we measure a performance metric called forgetting in Appendix A.2,
which is defined as the difference between the best accuracy obtained throughout the training
and the current accuracy (Chaudhry et al., 2018). This metric measures the model’s ability to re-
tain knowledge of previous tasks while learning new ones. The forgetting at task t is defined as:
Fgtt = 1

t−1

∑t−1
i=1 max

j=1,··· ,t−1
(aj,i − at,i). We also computed the Backward transfer (BWT) and

Forward transfer (FWT) metrics (Lopez-Paz & Ranzato, 2017). See Appendix A.7 for details.
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Table 1: Average accuracy AccT (%) on standard benchmark datasets. ‘-’ indicates experiments we
were unable to run, because of compatibility issues (e.g. GLFC and iCaRL in Domain-IL) or the
absence of surrogate (e.g. CFeD on MNIST). The results, averaged over 5 random seeds, demonstrate
the benefits of our proposed method in combination with all baselines. A buffer size of 200 is utilized
whenever methods require it. Note that FL+L2P needs additional pretrained ViT.

rotated-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FL (McMahan et al., 2017) 68.02±3.1 79.46±4.1 (↑11.44) 17.44±1.3 18.02±0.6 (↑0.58) 70.58±4.0 80.83±2.0 (↑10.25)
FL+A-GEM (Chaudhry et al., 2019) 68.34±5.6 74.74±2.3 (↑6.40) 17.82±0.9 19.44±0.9 (↑1.62) 77.14±3.1 83.16±1.6 (↑6.02)

FL+GPM (Saha et al., 2021) 74.42±6.4 - 17.59±0.4 - 74.50±3.6 -
FL+DER (Buzzega et al., 2020) 57.73±3.6 81.33±3.3(↑23.60) 18.44±3.7 30.94±3.8 (↑12.50) 69.34±3.2 77.99±0.8 (↑8.65)
FL+iCaRL (Rebuffi et al., 2017) - - 28.54±3.8 33.92±3.0 (↑5.38) 80.85±2.9 80.09±4.1 (↓0.76)

FL+L2P (Wang et al., 2022) 80.90±3.3 85.05±0.7 (↑4.15) 28.61±1.0 81.86±7.2 (↑53.25) 98.49±0.1 98.63±0.3 (↑0.14)
FedCurv (Shoham et al., 2019) 68.21±2.6 80.53±4.3 (↑12.32) 17.36±0.7 17.86±0.5 (↑0.50) 67.77±1.4 81.28±1.1 (↑13.51)

FedProx (Li et al., 2020) 67.79±3.2 78.74±4.1 (↑10.95) 16.67±2.7 17.97±0.8 (↑1.30) 69.57±6.5 81.23±1.3 (↑11.66)
CFeD (Ma et al., 2022) - - 16.30±4.6 24.07±8.5 (↑7.77) 77.35±4.6 79.30±5.7 (↑1.95)

GLFC (Dong et al., 2022) - - 41.42±1.3 41.61±1.3 (↑0.19) 81.84±2.1 82.87±1.0 (↑1.03)

permuted-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

FL 25.92±2.1 34.23±2.7 (↑8.31) 8.76±0.1 17.08±1.8 (↑8.32) 47.74±1.2 74.71±0.9 (↑26.97)
FL+A-GEM 33.43±1.4 39.09±3.5 (↑5.66) 8.90±0.1 19.53±1.3 (↑10.63) 63.84±0.8 74.84±0.5 (↑11.00)

FL+GPM 31.92±3.4 - 8.18±0.1 - 54.48±1.4 -
FL+DER 19.79±1.7 38.81±2.0 (↑19.02) 13.32±1.6 22.96±3.6 (↑9.64) 57.71±1.2 65.57±1.9 (↑7.86)

FL+iCaRL - - 21.76±1.1 27.44±1.2 (↑5.68) 69.91±0.7 72.83±0.5 (↑2.92)
FL+L2P 66.98±4.6 69.15±3.1 (↑2.17) 23.12±1.7 46.16±0.4 (↑23.04) 94.46±0.4 94.91±0.2 (↑0.45)
FedCurv 26.00±2.4 35.21±5.1 (↑9.21) 8.92±0.1 16.67±0.9 (↑7.76) 49.14±1.6 74.64±0.7 (↑25.49)
FedProx 25.92±2.5 35.60±4.7 (↑9.68) 8.75±0.2 16.92±1.4 (↑8.17) 47.05±3.2 73.95±0.8 (↑26.89)
CFeD - - 13.76±1.2 26.66±0.3 (↑12.9) 51.41±1.0 72.20±0.9 (↑20.79)
GLFC - - 13.18±0.4 13.47±0.7 (↑0.29) 49.78±0.8 49.20±1.2 (↓0.58)

5.1.2 RESULTS

Table 1 presents the average accuracy AccT of various methods on image classification benchmark
datasets measured upon completion of the final task T . For each setting, we compare the performance
of an existing method with/without FedGP. We observe that the proposed methods (represented by
“w/ FedGP”) nearly always improves the base methods (“w/o FedGP”) across the different datasets
and scenarios, as seen from the upward arrows indicating performance improvements. Additional
results are obtained for forgetting performance FgtT given in Table 11 in Appendix A.2. Moreover,
the performance of FedGP is analyzed progressively across tasks in Appendix A.1.

Remarkably, even a simple integration of the basic baseline, FL, with FedGP surpassed the perfor-
mance of most FL+CL and CFL baselines. For instance, in the sequential-CIFAR100 experiment, FL
with FedGP (17.08% class-IL, 74.71% task-IL) outperformed a majority of the baselines. Specif-
ically, it exceeds the performance of the two advanced CFL baselines: GLFC (13.18% class-IL,
49.78% task-IL) and CFeD (13.76% class-IL, 51.41% task-IL). This underscores the substantial capa-
bility of our method in the CFL setting. Importantly, FedGP can achieve competitive performance
even without utilizing information about task boundaries, unlike CFeD, GLFC, GPM, and iCaRL.

We also note that the FL+L2P method consistently exhibited the highest accuracy, largely due to
the utilization of a pretrained Vision Transformer (ViT) (Dosovitskiy et al., 2020; Zhang et al.,
2022), which helps mitigate the catastrophic forgetting. This is why we wrote the numbers in gray
with a caveat in the caption. Yet, our approach still managed to achieve significant performance
augmentation on top of it.

Effect of Buffer size. Table 2 reports the performances of baseline CL methods (A-GEM and DER)
with/without FedGP for different buffer sizes, ranging from 200 to 5120. For all different datasets
and all IL settings, increasing the buffer size further improves the advantage of applying FedGP, by
providing more data for replay and mitigating forgetting. However, a finite buffer cannot maintain
the entire history of data. In Fig. 3 we reported the effect of buffer size on the accuracy of old tasks.
At the end of each task, we measured the accuracy of the trained model with respect to the test data
for task 1. We tested on sequential-CIFAR100 dataset, and considered task incremental learning
(task-IL) setup. One can observe that when the buffer size B is small, the accuracy drops as the
model is trained on new tasks. On the other hand, when B ≥ 100, the task-IL accuracy for task 1 is
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Table 2: Impact of the buffer size on AccT (%)

rotated-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

Buffer Size Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

200
FL+A-GEM

68.34±5.6 74.74±2.3 (↑6.40) 8.90±0.1 19.53±1.3 (↑10.63) 63.84±0.8 74.84±0.5 (↑11.00)
500 70.18±8.7 78.74±3.2 (↑8.56) 8.87±0.1 25.89±0.9 (↑17.02) 64.38±1.4 79.35±0.5 (↑14.97)

5120 69.97±3.2 79.17±4.3 (↑9.20) 8.85±0.1 33.30±2.5 (↑24.45) 64.99±1.5 84.52±0.3 (↑19.53)

200
FL+DER

57.73±3.6 87.13±1.1 (↑29.40) 13.32±1.6 22.96±3.6 (↑9.64) 57.71±1.2 65.57±1.9 (↑7.86)
500 60.00±7.2 88.83±1.6 (↑28.83) 15.44±1.5 34.87±1.7 (↑19.43) 60.79±1.2 73.53±1.1 (↑12.74)

5120 58.63±3.9 89.46±1.2 (↑30.83) 18.89±1.0 45.76±3.8 (↑26.87) 62.77±1.5 83.41±1.3 (↑20.64)

Table 3: Effect of communication on accuracy (%) performance, with values in brackets indicating
differences from the FL baseline.

Method
R-MNIST P-MNIST S-CIFAR10 S-CIFAR100
Domain-IL Domain-IL Class-IL Task-IL Class-IL Task-IL

FL 68.02±3.1 27.49±2.0 17.44±1.3 70.58±4.0 8.76±0.1 47.74±1.2

FL w/ FedGP (2× comm overhead) 79.46±4.1 (↑11.44) 35.91±4.0 (↑8.42) 18.02±0.6 (↑0.58) 80.83±2.0 (↑10.25) 17.08±1.8 (↑8.32) 74.71±0.9 (↑26.97)
FL w/ FedGP (equalized comm overhead) 75.63±3.9 (↑7.61) 34.96±3.2 (↑7.47) 16.65±1.0 (↓0.79) 78.79±2.8 (↑8.21) 13.62±0.6 (↑4.86) 73.96±0.4 (↑26.22)

FL w/ FedGP (0.5× comm overhead) 76.05±4.0 (↑8.03) 29.75±4.6 (↑2.26) 14.30±1.3 (↓3.14) 66.90±3.6 (↓3.68) 13.09±0.5 (↑4.33) 69.96±0.6 (↑22.22)
FL w/ FedGP (0.2× comm overhead) 70.59±4.7 (↑2.57) 15.51±2.7 (↓11.98) 13.37±2.6 (↓4.07) 59.75±6.4 (↓10.83) 13.59±0.9 (↑4.83) 59.31±1.6 (↑11.57)

maintained throughout the process. Note that training with our default setting B = 200 does not hurt
the accuracy for task 1 throughout the continual learning process.

Figure 3: Accuracy (%) for Task 1, under the Task-IL setting on sequential-CIFAR100. We tested on
FedGP with different buffer sizes.

We are assuming that every client has the same buffer size. If the buffer sizes are not equal during
model training, clients with bigger buffers might add more diverse data, which could make the model
biased. A possible solution is to use a reweighting algorithm, which we plan to explore in the future.

Effect of communication frequency. Compared with baseline methods, FedGP has extra commu-
nication overhead for transmitting the buffer gradients from each client to the server. This means that
the required amount of communication is doubled for FedGP. We consider a variant of FedGP which
updates the model and buffer gradient less frequently (i.e., reduce the communication rounds for each
task), which has reduced communication than the vanilla FedGP. Table 3 reports the performance
for different datasets, when the communication overhead is set to 2x, 1x, 0.5x and 0.2x. First, in most
cases, FedGP with equalized (1x) communication overhead is outperforming FL. In addition, for
most of tested datasets including R-MNIST, P-MNIST and S-CIFAR100, FedGP outperforms FL
with at most 0.5x communication overhead. This means that FedGP enjoys a higher performance
with less communication, in the standard benchmark datasets for continual federated learning.
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Effect of computation overhead. Computation overhead is also an important aspect to consider
and we have conducted experiment on the actual wall-clock time measurements. Taking a CIFAR100
experiment as an example, the running time for 200 epochs for FedAvg on our device is 4068.97s.
When FedGP, which is built on top of FedAvg, was used, it ran for an additional 293.26s. This
indicates that it ran 7.2% longer over the same 200 epochs. The time consumed by FedGP can
be divided into two parts: (i) computing the global reference gradient after each FedAvg, and (ii)
projecting the gradient. In the above experiment, the reference gradient computation was done 200
times, taking a total of 49.07s, and the gradient projection was performed on 109,471 batches, which
is 68.38% of the total batches, taking a total of 244.19s. Overall, FedGP is computationally efficient
and affordable for edge devices.

Table 4: AccT (%) for asynchronous
task boundaries on the sequential-
CIFAR100 dataset.

Method Class-IL Task-IL

FL 16.22±1.2 59.04±1.7

FL+A-GEM 16.92±1.0 69.41±1.3

FL+A-GEM+FedGP 30.74±1.5 77.70±0.4

FL+DER 31.95±2.6 68.28±1.5

FL+DER+FedGP 36.29±1.0 72.02±0.7

Effect of the privacy leakage. Regarding the data leak-
age issue, we empirically evaluate the privacy leakage
of the FedGP framework and various other CFL base-
lines. For this purpose, we are employing the Mutual
Information Neural Estimator (MINE) (Belghazi et al.,
2018). This approach allows us to estimate the mutual in-
formation between individual user model updates and the
aggregated model update across all users at each global
training round. This methodology closely follows the
precedent work (Elkordy et al., 2022). Results will be
added soon.

Asynchronous task boundaries. In our previous experiments, we assumed synchronous task
boundaries where clients finish tasks at the same time. However, in many real-world scenarios,
different clients finish each task asynchronously. Motivated by this practical setting, we conducted
experiments in an asynchronous task boundary setting on sequential-CIFAR100. For every R = 20
communications, instead of traversing all data allocated for the current task, each client traverses
exactly 500 samples allocated to it, irrespective of whether these samples come from the same task.
Consequently, some clients might finish a task faster than others and move on to the next task. Thus,
during each global communication, clients could be working on different tasks. This setup more
closely aligns with our general continual learning settings, when the task boundary is unknown.
Table 4 shows the accuracy of each method averaged over T tasks after finishing all training, under
the asynchronous setting. Similar to the synchronous case, FedGP improves the accuracy of baseline
methods including A-GEM and DER. Notably, we have a better performance in the asynchronous
setting (see Table 4) compared with the synchronous setting (see Table 1). This might be because, in
the asynchronous setting, some clients receive new tasks earlier than others, which allows the model
to be exposed to more diverse data for each round, thus reducing the forgetting effect.

Effect of the number of tasks. We have conducted experiments with different number of tasks
for each dataset. For CIFAR100, we experimented with task numbers 5 and 10, while for CIFAR10
we tested with task numbers 2 and 5. Our results in Table 5 consistently demonstrate that the
FedGP algorithm provides a significant improvement in performance across all these different
task numbers. An interesting observation is that as the number of tasks increases, FedGP have
better performance improvement to baseline. This is because a higher number of tasks increases the
likelihood of data distribution shifts and therefore the problem of catastrophic forgetting becomes
more prominent. As such, FedGP, designed to handle this issue, has more opportunities to improve
the learning process in such scenarios. This might also partly explain why, in Table 1, FedGP shows
a generally higher improvement over the baselines on the sequential-CIFAR100 dataset compared to
the sequential-CIFAR10.

Effect of the number of users. We also conducted experiments to assess scalability by increasing
the client count to K = 20. Table 6 shows the results for K = 20 clients. This results demonstrates
that FedGP consistently improves the performance of baselines, across different number of clients.

Additionally, we evaluated a real-world scenario where only a random subset of clients participates
in training during each round. Detailed information and results are available in Appendix A.4
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Table 5: Average accuracy AccT (%) across various task numbers.

(# of Task, # of Classes per Task) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)
FL FL w/ FedGP FL FL w/ FedGP

(2, 5) 43.53±0.8 44.05±0.8 (↑0.52) 75.54±0.6 77.52±0.8 (↑1.98)
(5, 2) 17.44±1.3 18.02±0.6 (↑0.6) 70.58±4.0 80.83±2.0 (↑10.25)

sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)
FL FL w/ FedGP FL FL w/ FedGP

(5, 20) 16.49±0.3 22.71±0.9 (↑6.22) 50.60±0.9 69.41±0.8 (↑18.81)
(10, 10) 8.76±0.1 17.08±1.8 (↑8.32) 47.74±1.2 74.71±0.9 (↑26.97)

Table 6: The AccT (%) performance measured when we have K = 20 users. Similar to the results
for K = 10 in Table 1, our method improves the performance of baselines.

rotated-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FL 62.45±8.5 76.01±4.6 (↑13.56) 16.44±1.4 15.82±1.7 (↓0.62) 68.18±5.3 73.45±4.3 (↑5.27)
FedCurv 62.57±8.3 76.46±4.1 (↑13.89) 17.31±0.6 14.64±3.1 (↓2.67) 67.33±3.3 70.31±3.7 (↑2.98)
FedProx 62.14±8.6 75.84±4.4 (↑13.70) 16.37±1.1 16.15±1.3 (↓0.22) 66.24±1.4 74.79±3.9 (↑8.55)

FL+A-GEM 67.66±8.0 78.10±3.6 (↑10.44) 16.15±1.9 17.36±0.8 (↑1.21) 72.39±3.4 80.61±2.6 (↑8.22)
FL+DER 57.33±3.2 87.84±1.5 (↑30.51) 17.13±2.3 19.18±3.7 (↑2.05) 70.82±1.9 77.04±2.5 (↑6.22)

permuted-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

FL 20.26±1.6 20.67±4.7 (↑0.41) 8.61±0.1 17.47±1.1 (↑8.86) 50.00±1.6 76.29±0.8 (↑26.29)
FedCurv 20.25±1.9 23.30±5.7 (↑3.05) 8.93±0.0 19.42±1.1(↑10.49) 49.83±1.4 79.58±0.6 (↑29.75)
FedProx 20.19±1.4 23.78±5.2 (↑3.59) 8.88±0.1 18.86±1.0 (↑9.98) 50.86±1.2 78.19±0.9 (↑27.33)

FL+A-GEM 24.43±2.1 23.29±3.8 (↓1.14) 8.62±0.1 19.58±1.2 (↑10.96) 63.02±0.6 76.23±0.6 (↑13.21)
FL+DER 17.89±1.3 46.17±3.0 (↑28.28) 11.53±0.5 26.64±2.8 (↑15.11) 57.00±1.4 69.42±1.0 (↑12.42)

5.2 TEXT CLASSIFICATION

In addition to image classification, we also extended the evaluation of our method on text classification
task (Mehta et al., 2021). For this purpose, we utilized the YahooQA (Zhang et al., 2015) dataset
which comprises texts (questions and answers), and user-generated labels representing 10 different
topics. Similar to the approach taken with the CIFAR10 dataset, we partitioned the YahooQA dataset
into 5 tasks, where each task consisted of two distinct classes. Within each task, we used LDA to
partition data across 10 clients in a non-IID manner. To conduct the experiment, we employed a
pretrained DistilBERT (Sanh et al., 2019) with linear classification layer. We freeze the DistilBERT
model and only fine-tune the additional linear layer. The results of this experiment can be found
in Table 7. We can observe that FedGP consistently enhances the accuracy (AccT ) over baselines,
particularly in class-IL scenarios.

Table 7: Average classification accuracy AccT (%) on split-YahooQA dataset.

sequential-YahooQA (Class-IL) sequential-YahooQA (Task-IL)
Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FL 17.86±0.6 30.67±4.4(↑12.81) 80.87±1.2 88.04±1.4(↑7.17)
FL+A-GEM 20.86±0.3 47.02±1.9(↑26.16) 87.29±1.3 90.20±0.2(↑2.91)

FL+DER 43.64±2.1 54.28±1.3(↑10.64) 89.57±0.2 90.48±0.2(↑0.91)

5.3 ABLATIONS ON OUR ALGORITHM DESIGN

We have conducted experiments for ablations on our algorithm design, which is decomposed into
(1) gradient manipulation algorithm, and (2) buffer updating algorithm. Regarding the gradient
manipulation algorithm, we tested on 8 different methods that use the reference gradient to manipulate
the gradient. Regarding the buffer updating algorithm, we compared three different methods.

11



5.3.1 GRADIENT MANIPULATION

First, we considered different ways of manipulating the gradient g, given the reference gradient gref.
In the below table, we compared four different methods of updating g:

• Average: define g ← (g + gref)/2.
• Rotate: rotate g towards gref while keeping the magnitude.
• Project: project g to the space that is orthogonal to gref.
• Project & Scale: apply Project and then scale up the vector such that the magnitude is

identical to the original g

Recall that our FedGP applies Project method only when the angle between g and gref is larger than
90 degree, i.e., when the reference gradient gref (measured for the previous tasks) and the gradient g
(measured for the current task) conflicts to each other. Our intuition for such choice is, it is better to
manipulate g if the direction favorable for current task is conflicting with the direction favorable for
previous tasks. To support that this choice is meaningful, we compared two ways of deciding when
we manipulate the gradients, denoted below:

• (> 90): update the gradient g only when the angle(g, gref)> 90

• (Always): update the gradient g always

We compared the performances of above choices in Table 8, for sequential-CIFAR100 dataset. One
can confirm that our FedGP (denoted by Project (> 90) in the table) far outperforms all other
combinations, showing that our design (doing projection for conflicting case only) is the right choice.
If we check each component (Project and (> 90)) independently, one can check that choosing Project
outperforms Average, Rotate and Project & Scale in most cases, and choosing (> 90) outperforms
Always in all cases.

Table 8: Effect of different gradient manipulation methods on the accuracy (%) of FedGP, tested on
sequential-CIFAR100

Method Class-IL Task-IL

FL 8.76±0.1 47.74±1.2

Average (Always) 7.26±1.95 35.96±3.23

Average (> 90) 7.79±0.65 36.57±1.55

Rotate (Always) 7.59±0.89 36.15±2.83

Rotate (> 90) 8.41±0.78 38.97±1.83

Project & Scale (Always) 8.77±0.09 32.96±1.10

Project & Scale (> 90) 12.30±0.65 73.61±0.75

Project (Always) 8.90±0.08 34.00±1.98

Project (> 90), ours 17.08±1.8 74.71±0.9

We also tested whether doing the projection is helpful in all cases when angle(g, gref) > 90. We
considered applying the projection for p% of the cases having angle(g, gref) > 90, for p = 10, 50, 80
and 100. Note that p = 100% case reduces to our FedGP.

Table 9 shows the effect of projection rate p% on the accuracy, tested on sequential-CIFAR100
dataset. In both class-IL and task-IL settings, increasing p always improves the accuracy of the
FedGP method. This supports that our way of projection is suitable for the continual federated
learning setup.

5.3.2 BUFFER UPDATING

In Table 10, we compared three different buffer updating algorithms:

• Sliding Window Sampling: replaces the earliest data point in the buffer when new data
arrives
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Table 9: Effect of projection rate p% on the accuracy (%) of FedGP, tested on sequential-CIFAR100

Method Class-IL Task-IL

FL, p = 0% 8.76±0.1 47.74±1.2

FedGP, p = 10% 8.82±0.07 54.90±1.61

FedGP, p = 50% 8.91±0.07 67.89±0.67

FedGP, p = 80% 10.36±0.42 72.73±0.74

FedGP, p = 100% (ours) 17.08±1.8 74.71±0.9

• Random Sampling: randomly replaces a data point in the buffer with incoming new data

• Reservoir Sampling (Ours): given n (the number of observed samples up to now) and |Mk|
(the buffer size), we do the following

– when n ≤ |Mk|, we put the current sample in the buffer

– when n > |Mk|, with probability |Mk|
n < 1, we replace a sample in the buffer with

the current sample

Note that when the number of incoming data is n, those n samples have the same probability of
getting into the buffer, for the Reservoir Sampling method used in our paper. Thus, when Reservoir
Sampling is used, the buffer contains approximately equal number of samples for each task (when
each task has the same number of samples), throughout the continual learning process. This is the
underlying intuition why we choose such buffer updating algorithm. To support this claim, we report
the performance of different sampling methods in Table 10. We can confirm that our sampling method
is outperforming other sampling methods.

We present the pseudocode for the ReservoirSampling algorithm in Algorithm 4. We now
prove that for reservoir sampling, the probability of a sample contained in the buffer is |Mk|

n . We
prove this by induction; suppose this statement holds when n− 1 samples are observed, and we show
that this holds when one more sample is observed. Note that the probability of a sample contained in
the buffer can be computed as |Mk|

n−1 ∗ (1−
|Mk|
n ∗ 1

|Mk| ) =
|Mk|
n , where

• |Mk|
n−1 is the probability of the sample initially contained in the buffer;

• (1− |Mk|
n ∗ 1

|Mk| ) is the probability of a sample not being kicked out of the buffer;

• |Mk|
n ∗ 1

|Mk| is the probability of a sample being kicked out of the buffer

Algorithm 4 ReservoirSampling(Mk, (x, y), n) (Vitter, 1985) at client k

Input: local bufferMk, incoming data (x, y) and the number of observed samples n
if n ≤ |Mk| then

Add data (x, y) into local bufferMk

else
i← Uniform{1, 2, · · · , n}
if i ≤ |Mk| then
Mk[i]← (x, y)

end if
end if
ReturnMk, the updated local buffer

Fig. 4 compares the sample distribution across different tasks, for different buffer updating algorithms
(uniform-random sampling, reservoir sampling and sliding window sampling). It is important to note
that the depicted distributions are representative under the condition where the buffer size is equal
to the number of samples per task. This clearly shows the difference of buffer updating algorithms,
which guided to the different performances reported in Table 10.
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Table 10: Effect of different buffer updating algorithms on the accuracy (%) of FedGP, tested on
sequential-CIFAR100

Method Class-IL Task-IL

FL 8.76±0.1 47.74±1.2

Sliding Window Sampling 8.82±0.15 46.16±2.38

Random Sampling 9.72±0.10 54.82±1.58

Reservoir Sampling (ours) 17.08±1.8 74.71±0.9

Sliding 1 2 3

After task iAfter Task 1 After Task 2 After Task 3

Random 1

1
2

1 2
3

1/e

1-1/e

1/e^2

(1/e) * (1-1/e)

Reservoir 1
1 2 1 2 3

Figure 4: The buffer sample distribution across different tasks for different buffer updating algorithms
(uniform-random, sliding window, our reservoir). This is illustrated on the scenario where the buffer
size is equal to the number of samples per task.

All in all, the reservoir sampling method used in FedGP allows us to have balanced sample distribu-
tion across different tasks, thus allowing us to mitigate the catastrophic forgetting and to improve the
accuracy in the continual federated learning setting.

6 CONCLUSION

In this paper, we present FedGP, a novel method of using buffer data for mitigating the catastrophic
forgetting issues in CFL. Specifically, we use the gradient projection method to prevent model
updates that harm the performance on previous tasks. Our empirical results on benchmark datasets
(rotated-MNIST, permuted-MNIST, sequential-CIFAR10 and sequential-CIFAR100) and on a text
classification dataset show that FedGP improves the performance of existing CL and CFL methods.
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A SUPPLEMENTARY RESULTS

In this section, we furnish additional experimental outcomes that serve to further bolster the findings
of our primary investigation.

A.1 PROGRESSIVE PERFORMANCE OF FEDGP ACROSS TASKS

Fig. 5 depicts the average accuracy Acct measured at task t = 1, 2, · · · , 10 and the average forgetting
Fgtt measured at task t = 2, 3, · · · , 10. The accuracy of FedAvg rapidly drops as different tasks are
given to the model, as expected. FedCurv and FedProx perform similarly to FedAvg, while A-GEM
and DER partially alleviate forgetting, resulting in higher accuracies and reduced forgetting compared
to FedAvg. Combining these baselines with FedGP lead to significant performance improvements,
which allows the solid lines in the accuracy plot consistently remain at the top. For example, for the
experiment on task-IL for sequential-CIFAR100, the accuracy measured at task 5 (denoted by Acc5)
is 55.37% for FedProx, while 71.12% for FedProx+FedGP. These results demonstrate that FedGP
effectively mitigates forgetting and enhances existing methods in CFL.
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Figure 5: Evaluating accuracy (↑) and forgetting (↓) in multiple datasets with and without FedGP
using a buffer size of 200. The solid lines indicate the results obtained with our method, while
the dotted lines represent the results obtained without our method. The results show a significant
improvement in accuracy as well as reduced forgetting for all settings.

A.2 FORGETTING ANALYSIS ACROSS DATASETS

We present the complementary information to Table 1 in Table 11, illustrating the extent of FgtT
observed across multiple benchmark datasets. Our method exhibits exceptional effectiveness in
mitigating forgetting. Remarkably, it demonstrates consistent performance across all datasets and
baselines, making it a versatile solution.

In line with the presentation of forgetting in Table 11, we present the forgetting analysis when the
number of clients is set to 20 in Table 12. Notably, our method exhibits consistent and impressive
performance across varying numbers of users. It consistently proves its effectiveness regardless of
the specific user count, showcasing its robustness and reliability.
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Table 11: Average forgetting FgtT (%) (lower is better) on benchmark datasets at the final task T .

rotated-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FL 25.98±3.2 11.66±2.7(↓14.32) 80.69±3.6 78.62±4.3(↓2.07) 15.37±4.8 4.49±1.9(↓10.88)
FedCurv 25.80±2.4 11.18±2.7(↓14.62) 80.90±6.6 79.85±3.9(↓1.05) 19.37±4.8 4.77±1.6(↓14.60)
FedProx 25.74±3.1 11.76±2.9(↓13.98) 84.35±2.4 80.24±2.5(↓4.11) 18.24±4.9 4.17±1.0(↓14.07)

FL+A-GEM 26.30±5.7 15.18±2.4(↓11.12) 82.18±6.6 80.38±2.5(↓1.80) 10.00±3.0 4.15±0.7(↓5.85)
FL+DER 21.42±4.0 5.51±1.2(↓15.91) 60.98±14.6 47.88±7.2(↓13.10) 6.34±4.9 2.73±1.3(↓3.61)

permuted-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

FL 43.47±5.3 21.40±4.9(↓22.07) 77.69±0.5 67.02±2.3(↓10.67) 34.38±1.6 5.39±0.8(↓28.99)
FedCurv 42.88±5.0 22.85±3.5(↓20.03) 78.40±0.9 67.75±0.8(↓10.65) 33.71±2.2 5.86±0.7(↓27.85)
FedProx 42.59±5.6 20.77±5.6(↓21.82) 77.35±0.4 66.81±2.2(↓10.54) 34.79±3.6 5.69±0.9(↓29.10)

FL+A-GEM 35.61±5.3 24.05±2.4(↓11.56) 77.97±0.7 63.99±2.0(↓13.98) 16.92±1.1 5.16±0.5(↓11.76)
FL+DER 45.33±5.0 34.71±5.0(↓10.62) 69.37±1.7 53.84±6.7(↓15.53) 22.43±0.7 14.16±1.7(↓8.27)

Table 12: The FgtT (%) (lower is better) performance measured when we have K = 20 users.

rotated-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FL 31.00±9.5 13.45±3.6 (↓17.55) 82.62±3.1 73.39±4.5 (↓9.23) 17.93±2.7 6.14±4.9 (↓11.79)
FedCurv 30.73±9.3 12.97±3.8 (↓17.76) 79.55±3.8 75.38±5.3 (↓4.17) 18.19±3.0 9.14±3.1 (↓9.05)
FedProx 31.04±9.7 13.31±3.4 (↓17.73) 82.94±1.1 78.67±4.2 (↓4.27) 20.60±2.6 8.52±3.0 (↓12.08)

FL+A-GEM 25.22±8.8 11.02±3.0 (↓14.20) 82.39±2.4 80.25±4.1 (↓2.14) 12.29±2.2 4.00±2.4 (↓8.29)
FL+DER 28.93±6.6 5.18±1.1 (↓23.75) 55.10±9.8 60.90±3.8 (↑5.80) 3.20±1.6 2.71±1.7 (↓0.49)

permuted-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

FL 24.27±5.2 8.67±7.0 (↓15.60) 73.05±0.5 62.71±0.9 (↓10.34) 27.07±1.7 2.48±0.7 (↓24.59)
FedCurv 24.02±5.4 8.10±5.4 (↓15.92) 80.07±0.5 68.58±1.1 (↓11.49) 34.63±1.7 3.48±0.6 (↓31.15)
FedProx 23.01±5.7 5.93±5.1 (↓17.08) 79.46±0.5 68.40±0.9 (↓11.06) 32.82±1.4 4.13±0.7 (↓28.69)

FL+A-GEM 22.12±4.9 9.45±5.4 (↓12.67) 72.97±1.1 60.27±1.3 (↓12.70) 12.54±1.3 2.66±0.2 (↓9.88)
FL+DER 32.26±1.1 27.30±4.2 (↓4.96) 67.07±0.8 47.74±3.8 (↓19.33) 19.78±1.7 8.67±1.4 (↓11.11)

A.3 EXTENDED ANALYSIS ON THE INFLUENCE OF BUFFER SIZE

In the main body of our study, we examine the influence of different buffer sizes on the performance
metric AccT , utilizing rotated-MNIST and sequential-CIFAR100 datasets. To further augment our
analysis, we have included two additional datasets in Table 13, incorporating various buffer sizes. By
evaluating AccT (where higher values indicate better performance), we discovered that our proposed
method, referred to as FedGP, consistently enhances the average accuracy across these two datasets.

Table 13: Impact of the buffer size on AccT (%)

permuted-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

Buffer Size Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

200
FL+A-GEM

33.43±1.4 39.09±3.5 (↑5.66) 17.82±0.9 19.44±0.9 (↑1.62) 77.14±3.1 83.16±1.6 (↑6.02)
500 33.35±1.0 42.45±6.9 (↑9.10) 18.39±0.2 20.34±0.6 (↑1.95) 78.43±3.0 85.95±0.6 (↑7.52)

5120 32.72±1.4 40.07±2.5 (↑7.35) 16.41±2.6 20.64±2.2 (↑4.23) 73.89±3.3 86.82±1.5 (↑12.93)

200
FL+DER

19.79±1.7 43.43±0.9 (↑23.64) 18.44±3.7 30.94±3.8 (↑12.50) 69.34±3.2 77.99±0.8 (↑8.65)
500 19.17±1.6 43.38±2.4 (↑24.21) 20.81±3.6 29.78±4.3 (↑8.97) 71.17±1.5 74.98±3.5 (↑3.81)

5120 18.57±1.4 44.68±2.4 (↑26.11) 34.75±2.2 42.38±4.5 (↑7.63) 78.22±2.3 81.94±1.7 (↑3.72)

A.4 RANDOM SAMPLING

We implement a more realistic federated learning environment by applying uniform sampling tech-
niques to randomly select the participating clients in each round. We conduct experiments on
CIFAR100. A total of 50 clients is set up, and during each communication, only a random 50% of the
clients participate in training. As can be seen, even in such a scenario, where our algorithm cannot
update the reference gradient using the local buffer from all clients, there is still an improvement in
performance using our algorithm.
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Table 14: Average accuracy AccT (%) with 50 clients and 50% client sampling rate, for sequential-
CIFAR100

Method Class-IL Task-IL

FL 7.46± 0.08 43.85± 1.33
FL+FedGP 9.34± 0.31 (↑ 1.88) 65.76± 0.48 (↑ 21.91)

A.5 PERFORMANCE ON THE CURRENT TASK

Balancing the retention of old tasks and the learning of new ones is a common challenge in continual
learning. It can be difficult to determine the best approach, especially when two tasks are significantly
different. This is a challenge faced by many methods in continual learning.

We provided additional experimental results on the performance measured for the current task. The
below Fig. 6 shows the Class-IL accuracy of FedGP (with buffer size 200) and FL for S-CIFAR100,
where the total number of tasks is set to 10. During the continual learning process, we measured
the accuracy of each model for the current task. One can confirm that using FedGP does not hurt
the current task accuracy, compared with FL. Note that this shows that FedGP does not impair the
performance of the current task, while also alleviating the forgetting in upcoming rounds.

Figure 6: Class-IL Accuracy (%) of current task for FL and FedGP on the S-CIFAR100

A.6 COMPARISON WITH FOT

We compared our method with SOTA paper (Bakman et al., 2023) proposing Federated Orthogonal
Training (FOT) algorithm for continual federated learning.

In FOT, at the end of each task, the server aggregates the activations of each local model (computed for
local data points) and computes the subspace spanned by the aggregated activations. This subspace is
used during the global model update process; the gradient is updated in the direction that is orthogonal
to the subspace. Note that FOT has several advantages compared with existing baselines; the privacy
leakage is mitigated, the communication cost is reduced, and the solution has theoretical guarantees.

While both FOT and our FedGP project the gradients on the subspace specified by previous tasks,
they have two main differences. First, the subspace is defined in a different manner: FOT relies on
the representations of local model activations to define S. FedGP, on the other hand, relies on the
gradient of model computed on its local buffer data. Second, FOT projects the gradient computed at
the server side, while FedGP projects the gradient computed at each client.

The table 15 compares the accuracy of FL, FOT and FedGP (with buffer size 200) for P-MNIST and
S-CIFAR100 under the task incremental learning scenario, consistent with the paper’s benchmarks.
Assuming that the local buffer is available, FedGP outperforms FOT.
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Table 15: Comparative accuracy (%) performance analysis of FL, FOT, and FL+FedGP

Methods P-MNIST (Domain-IL) S-CIFAR100 (Task-IL)
FL 25.92±2.1 47.74±1.2
FOT 23.77±1.1 50.57±1.5
FL+FedGP 34.23±2.7 74.71±0.9

A.7 BACKWARD AND FORWARD TRANSFER METRICS

Our method outperforms FedAvg (FL) in both Backward and Forward Transfer metrics across the
sequential-CIFAR10 and sequential-CIFAR100 datasets, as shown in the Table 16.

Table 16: Backward and Forward Transfer (↑) Results for sequential-CIFAR100 and sequential-
CIFAR10

Metric Dataset Methods Class-IL Task-IL

Backward CIFAR100 FL −78.11 −36.52
Backward CIFAR100 FL+FedGP −72.24 (↑ 5.87) −3.68 (↑ 32.84)
Backward CIFAR10 FL −78.78 −14.48
Backward CIFAR10 FL+FedGP −78.55 (↑ 0.23) −0.60 (↑ 13.88)
Forward CIFAR100 FL 16.98 16.98
Forward CIFAR100 FL+FedGP 17.16 (↑ 0.18) 17.48 (↑ 0.50)
Forward CIFAR10 FL 12.75 12.74
Forward CIFAR10 FL+FedGP 12.98 (↑ 0.23) 12.99 (↑ 0.25)

A.8 EFFECT OF DIFFERENT CURRICULUM.

We evaluate how the performance of FedGP changes when we shuffle the order of tasks in the
continual learning. We randomly shuffle the sequential-CIFAR100 task order and label them as
curriculum 1 to 4, as shown in the Table 17. Regardless of the different curriculum, FL+FedGP
outperforms FedAvg.

Table 17: Average accuracy AccT (%) across randomized curriculum in sequential-CIFAR100.

Curriculum Methods Class-IL Task-IL

1 FL 8.15 46.25
1 FL+FedGP 12.10 (↑ 3.95) 72.69 (↑ 26.44)
2 FL 8.46 47.56
2 FL+FedGP 14.37 (↑ 5.91) 73.19 (↑ 25.63)
3 FL 8.82 45.04
3 FL+FedGP 12.58 (↑ 3.76) 74.71 (↑ 29.67)
4 FL 7.87 43.87
4 FL+FedGP 14.85 (↑ 6.98) 73.74 (↑ 29.87)

A.9 ADDITIONAL HYPERPARAMETERS FOR SPECIFIC METHODS

In addition to the hyperparameters discussed in the main paper, additional method-specific hyperpa-
rameters are outlined in Table 18.

Table 18: Additional hyperparameters for specific methods.

Method Parameter Values
FL+DER Regularization Coefficient sequential-CIFAR10 (0.3), Others (1)

FL+L2P Communication Round R rotated-MNIST (5), permuted-MNIST (1), sequential-CIFAR10 (20), sequential-CIFAR100 (20)

CFeD Surrogate Dataset sequential-CIFAR10 (CIFAR100), sequential-CIFAR100 (CIFAR10)
Note: No server distillation included.
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(a) Framework for automotive data evaluation.
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(b) Object detection performance comparison.

Figure 7: (a) The data loader continuously supplies data from CARLA camera outputs to individual
FL clients. Each client trains on its local data and updates its buffer to retain old knowledge. (b)
The result shows the object detection performance comparison between Ideal, FedAvg, DER, and
DER+FedGP on a realistic CARLA dataset.

Here we test FedGP on realistic streaming data (Dai et al., 2023) which leverage two open
source tools, an urban driving simulator (CARLA (Dosovitskiy et al., 2017)) and a FL frame-
work (OpenFL (Reina et al., 2021)). As shown in Fig. 7a, CARLA provides OpenFL with a real-time
collection of continuous streaming vehicle camera output data and automatic annotation about object
detection. This streaming data capture the spatio-temporal dynamics of data generated from real-
world applications. After loading data of vehicles from CARLA, OpenFL performs collaborative
training over multiple clients.

We evaluate the solutions to the forgetting problem by spawning two vehicles in a virtual town. During
the training of the tinyYOLO (Redmon & Farhadi, 2017) object detection model, we use a custom
loss that combines classification, detection and confidence losses. In order to quantify the quality
of the incremental model trained by various baselines, we report a common metric, namely, mean
average precision (mAP). This metric assesses the correspondence between the detected bounding
boxes and the ground truth, with higher scores indicating better performance. To calculate mAP, we
analyze the prediction results obtained from pre-collected driving snippets of vehicular clients. These
driving snippets are gathered by navigating the town over a duration of 3000 simulation seconds.

For those experiments on realistic CARLA streaming data, we compare the performances of Ideal,
FedAvg, DER and DER+FedGP. In the Ideal scenario, the client possesses sufficient memory to
retain all data from prior tasks, enabling joint training on all stored data. The last two methods are
equipped with buffer size of 200. We train for 70 communication rounds and each round continues
for about 200 simulation seconds. The results are presented in Fig. 7b. Note that at communication
round 60, one client gets on the highway, which incurs a domain shift. One can confirm that the
performance of FedAvg degrades in such domain shift scenario, whereas DER and DER+FedGP
maintain the accuracy. Moreover, FedGP nearly achieves the performance of the ideal scenario with
infinite buffer size, demonstrating the effectiveness of our method.

C CONTINUAL LEARNING METHODS WITH FEDGP

We provided the pseudocode for Algorithm 2 modifications when implementing FL+DER+FedGP
and FL+A-GEM+FedGP, respectively presented in Algorithm 5 and Algorithm 6. Other FL+CL
and CFL methods are also combined with FedGP in a similar manner.

Algorithm 5 incorporates Dark Experience Replay (DER) into the local update process on client
k ∈ [K].When the server sends the global model w to client k, the client calculates the output logits
or pre-softmax response z. In addition, the client samples past data (x′, y′) and the corresponding
logits z′ from the bufferMk. To address forgetting, the regularization term considers the Euclidean
distance between the sampled output logits and the current model’s output logits on buffer data. The
gradient g is then refined using this regularization term to minimize the discrepancy between the
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Algorithm 5 DER ClientUpdate at client k

Input: Task index t, model w, buffer gradient
gref, batch size β, regularization coefficient λ,
and learning rate α
Load the dataset Dk

t and local bufferMk

Initialize n = 0 at the first task
for each batch {(xi, yi)}βi=1 in Dk

t do
Let X = {xi}βi=1 and Y = {yi}βi=1
Z ← h(X;w)
where f(X;w) := σ (h(X;w))
Sample (X ′, Z ′, Y ′) fromMk

ℓreg ← λ ∥Z ′ − h(X ′;w)∥22
g = ∇w [ℓ(Y, f(X;w)) + ℓreg]

g̃ ← g − projgref g · 1(g
⊤
refg ≤ 0)

w ← w − αg̃
ReservoirSampling(Mk, (X,Z, Y ), n)

n← n+ β
end for
Return w

Algorithm 6 A-GEM ClientUpdate at client k

Input: Task index t, model w, buffer gradient
gref, batch size β
Load the dataset Dk

t , local bufferMk

Initialize n = 0 at the first task
for each batch {(xi, yi)}βi=1 in Dk

t do
gc = ∇w

[
1
β

∑β
i=1 ℓ(yi, f(xi;w))

]
Sample {(x′

i, y
′
i)}

β
i=1 fromMk

gb = ∇w

[
1
β

∑β
i=1 ℓ(y

′
i, f(x

′
i;w))

]
g ← gc − projgbgc · 1(g

⊤
b gc ≤ 0)

g̃ ← g − projgref g · 1(g
⊤
refg ≤ 0)

w ← w − αg̃ for some learning rate α

ReservoirSampling(Mk, {(xi, yi)}βi=1, n)

n← n+ β
end for
Return w to server

current and past output logits, thereby mitigating forgetting. The following steps are the same as in
the main text.

Algorithm 6 combines with A-GEM, applying gradient projection twice. First, the client computes
the gradient gc with respect to the new data fromDk

t . After replaying previous samples (x′, y′) stored
in the local bufferMk, the client computes the gradient gb with respect to this buffered data. If
these gradients differ significantly in terms of their direction, the client projects gc onto gb to remove
interference.
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